Scatter plot to compare between the row-wise mean, median, variance or range
from a data frame or matrix. Also supports transformations of those
variables, such as log10(mean). If y = NULL, a density plot is
rendered instead.
Usage
plotRowStats(
  data,
  x,
  y = NULL,
  subset = NULL,
  xmin = NULL,
  xmax = NULL,
  ymin = NULL,
  ymax = NULL,
  xlim = NULL,
  ylim = NULL,
  cache = NULL,
  verbose = FALSE,
  data2 = NULL,
  legend = FALSE,
  legendLabels = c("Original", "Highlighted")
)Arguments
- data
 Data frame or matrix containing samples per column and, for instance, gene or alternative splicing event per row
- x, y
 Character: statistic to calculate and display in the plot per row; choose between
mean,median,varorrange(or transformations of those variables, e.g.log10(var)); ify = NULL, the density ofxwill be plot instead- subset
 Boolean or integer:
datapoints to highlight- xmin, xmax, ymin, ymax
 Numeric: minimum and maximum X and Y values to draw in the plot
- xlim, ylim
 Numeric: X and Y axis range
- cache
 List of summary statistics for
datapreviously calculated to avoid repeating calculations (output also returns cache in attribute namedcachewith appropriate data)- verbose
 Boolean: print messages of the steps performed
- data2
 Same as
dataargument but points indata2are highlighted (unlessdata2 = NULL)- legend
 Boolean: show legend?
- legendLabels
 Character: legend labels
See also
Other functions for gene expression pre-processing:
convertGeneIdentifiers(),
filterGeneExpr(),
normaliseGeneExpression(),
plotGeneExprPerSample(),
plotLibrarySize()
Other functions for PSI quantification:
filterPSI(),
getSplicingEventTypes(),
listSplicingAnnotations(),
loadAnnotation(),
quantifySplicing()
Examples
library(ggplot2)
# Plotting gene expression data
geneExpr <- readFile("ex_gene_expression.RDS")
plotRowStats(geneExpr, "mean", "var^(1/4)") +
    ggtitle("Mean-variance plot") +
    labs(y="Square Root of the Standard Deviation")
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
# Plotting alternative splicing quantification
annot <- readFile("ex_splicing_annotation.RDS")
junctionQuant <- readFile("ex_junctionQuant.RDS")
psi <- quantifySplicing(annot, junctionQuant, eventType=c("SE", "MXE"))
#> Using 3 of 3 events (100%) whose junctions are present in junction quantification data...
#>   |                                        |   0% 
  |========                                |  20% 
  |================                        |  40% 
  |========================                |  60% 
  |================================        |  80% 
  |========================================| 100% 
#> Using 3 of 3 events (100%) whose junctions are present in junction quantification data...
#>   |                                        |   0% 
  |========                                |  20% 
  |================                        |  40% 
  |========================                |  60% 
  |================================        |  80% 
  |========================================| 100% 
medianVar <- plotRowStats(psi, x="median", y="var", xlim=c(0, 1)) +
    labs(x="Median PSI", y="PSI variance")
medianVar
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.
rangeVar  <- plotRowStats(psi, x="range", y="log10(var)", xlim=c(0, 1)) +
    labs(x="PSI range", y="log10(PSI variance)")
rangeVar
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's fill values.