Uses filterByExpr
to determine genes with sufficiently
large counts to retain for statistical analysis.
Usage
filterGeneExpr(
geneExpr,
minMean = 0,
maxMean = Inf,
minVar = 0,
maxVar = Inf,
minCounts = 10,
minTotalCounts = 15
)
Arguments
- geneExpr
Data frame or matrix: gene expression
- minMean
Numeric: minimum of read count mean per gene
- maxMean
Numeric: maximum of read count mean per gene
- minVar
Numeric: minimum of read count variance per gene
- maxVar
Numeric: maximum of read count variance per gene
- minCounts
Numeric: minimum number of read counts per gene for a worthwhile number of samples (check
filterByExpr
for more information)- minTotalCounts
Numeric: minimum total number of read counts per gene
See also
Other functions for gene expression pre-processing:
convertGeneIdentifiers()
,
normaliseGeneExpression()
,
plotGeneExprPerSample()
,
plotLibrarySize()
,
plotRowStats()
Examples
geneExpr <- readFile("ex_gene_expression.RDS")
# Add some genes with low expression
geneExpr <- rbind(geneExpr,
lowReadGene1=c(rep(4:5, 10)),
lowReadGene2=c(rep(5:1, 10)),
lowReadGene3=c(rep(10:1, 10)),
lowReadGene4=c(rep(7:8, 10)))
#> Warning: number of columns of result, 10, is not a multiple of vector length 20 of arg 2
#> Warning: number of columns of result, 10, is not a multiple of vector length 50 of arg 3
#> Warning: number of columns of result, 10, is not a multiple of vector length 100 of arg 4
#> Warning: number of columns of result, 10, is not a multiple of vector length 20 of arg 5
# Filter out genes with low reads across samples
geneExpr[filterGeneExpr(geneExpr), ]
#> Normal 1 Normal 2 Normal 3 Normal 4 Normal 5 Cancer 1 Cancer 2
#> ACTN1|87 15810.00 10454.00 6247.00 23657.00 17107.00 13509.00 7038.00
#> ADAM15|8751 18894.97 6483.95 5463.78 9740.44 5042.07 4866.82 4901.09
#> AKAP8L|26993 3211.00 2661.00 1322.00 3322.00 5009.00 2366.00 1358.00
#> AKR1A1|10327 6413.00 3170.00 2018.00 8364.00 5797.00 4687.00 3901.00
#> ALDOA|226 69936.00 97762.00 26714.00 72208.00 47405.00 31632.00 34473.00
#> ANXA6|309 20259.00 10964.00 7139.00 16940.00 12995.00 10893.00 8817.00
#> ARAP1|116985 11774.26 4539.73 3070.90 6822.52 7186.83 6104.56 4634.95
#> ATP5C1|509 4869.00 4210.00 4822.00 5879.00 6267.00 4283.00 3530.00
#> BOLA2|552900 2978.44 3153.36 1790.55 1806.70 2535.48 2035.52 1330.20
#> C16orf13|84326 2453.00 1758.00 1144.00 2028.00 2381.00 1355.00 952.00
#> Cancer 3 Cancer 4 Cancer 5
#> ACTN1|87 9426.00 21930.00 27954.00
#> ADAM15|8751 7038.25 3867.00 9977.15
#> AKAP8L|26993 2958.00 1946.00 1602.00
#> AKR1A1|10327 3351.00 3670.00 3807.00
#> ALDOA|226 28357.00 22264.00 53072.00
#> ANXA6|309 11703.00 5670.00 23697.00
#> ARAP1|116985 6058.86 4088.99 6724.75
#> ATP5C1|509 7696.00 5527.00 8987.00
#> BOLA2|552900 2615.29 1049.42 2471.20
#> C16orf13|84326 1214.00 904.00 1703.00