Create multiple scatterplots from ICA
Usage
plotICA(ica, components = seq(10), groups = NULL, ...)
Arguments
- ica
Object resulting from
performICA()
- components
Numeric: independent components to plot
- groups
Matrix: groups to plot indicating the index of interest of the samples (use clinical or sample groups)
- ...
Arguments passed on to
pairsD3::pairsD3
group
a optional vector specifying the group each observation belongs to. Used for tooltips and colouring the observations.
subset
an optional vector specifying a subset of observations to be used for plotting. Useful when you have a large number of observations, you can specify a random subset.
labels
the names of the variables (column names of
x
used by default).cex
the magnification of the plotting symbol (default=3)
width
the width (and height) of the plot when viewed externally.
col
an optional (hex) colour for each of the levels in the group vector.
big
a logical parameter. Prevents inadvertent plotting of huge data sets. Default limit is 10 variables, to plot more than 10 set
big=TRUE
.theme
a character parameter specifying whether the theme should be colour
colour
(default) or black and whitebw
.opacity
numeric between 0 and 1. The opacity of the plotting symbols (default 0.9).
tooltip
an optional vector with the tool tip to be displayed when hovering over an observation. You can include basic html.
leftmar
space on the left margin
topmar
space on the bottom margin
diag
logical, whether or not the main diagonal is plotted (scatter plot of variables against themselves).
See also
Other functions to analyse independent components:
performICA()
Examples
data <- scale(USArrests)
ica <- fastICA::fastICA(data, n.comp=4)
plotICA(ica)
# Colour by groups
groups <- NULL
groups$sunny <- c("California", "Hawaii", "Florida")
groups$ozEntrance <- c("Kansas")
groups$novel <- c("New Mexico", "New York", "New Hampshire", "New Jersey")
plotICA(ica, groups=groups)