Assign average sample values to their corresponding subjects
Source:R/analysis.R
assignValuePerSubject.Rd
Assign average sample values to their corresponding subjects
Arguments
- data
One-row data frame/matrix or vector: values per sample for a single gene
- match
Matrix: match between samples and subjects
- clinical
Data frame or matrix: clinical dataset (only required if the
subjects
argument is not handed)- patients
Character: subject identifiers (only required if the
clinical
argument is not handed)- samples
Character: samples to use when assigning values per subject (if
NULL
, all samples will be used)
See also
Other functions to analyse survival:
getAttributesTime()
,
labelBasedOnCutoff()
,
optimalSurvivalCutoff()
,
plotSurvivalCurves()
,
plotSurvivalPvaluesByCutoff()
,
processSurvTerms()
,
survdiffTerms()
,
survfit.survTerms()
,
testSurvival()
Examples
# Calculate PSI for skipped exon (SE) and mutually exclusive (MXE) events
annot <- readFile("ex_splicing_annotation.RDS")
junctionQuant <- readFile("ex_junctionQuant.RDS")
psi <- quantifySplicing(annot, junctionQuant, eventType=c("SE", "MXE"))
#> Using 3 of 3 events (100%) whose junctions are present in junction quantification data...
#> | | 0%
|======== | 20%
|================ | 40%
|======================== | 60%
|================================ | 80%
|========================================| 100%
#> Using 3 of 3 events (100%) whose junctions are present in junction quantification data...
#> | | 0%
|======== | 20%
|================ | 40%
|======================== | 60%
|================================ | 80%
|========================================| 100%
# Match between subjects and samples
match <- rep(paste("Subject", 1:3), 2)
names(match) <- colnames(psi)
# Assign PSI values to each subject based on the PSI of their samples
assignValuePerSubject(psi[3, ], match)
#> Subject 1 Subject 2 Subject 3
#> 0.4336962 0.4815878 0.3925439