Plot similar perturbations against predicted targeting drugs

plotTargetingDrugsVSsimilarPerturbations(
  targetingDrugs,
  similarPerturbations,
  column,
  labelBy = "pert_iname",
  quantileThreshold = 0.25,
  showAllScores = FALSE,
  keyColTargetingDrugs = NULL,
  keyColSimilarPerturbations = NULL
)

Arguments

targetingDrugs

targetingDrugs object

similarPerturbations

similarPerturbations object

column

Character: column to plot (must be available in both databases)

labelBy

Character: column in as.table(similarPerturbations) or as.table(targetingDrugs) to be used for labelling

quantileThreshold

Numeric: quantile (between 0 and 1) to highlight values of interest

showAllScores

Boolean: show all scores? If FALSE, only the best score per compound will be plotted

keyColTargetingDrugs

Character: column from targetingDrugs to compare with column keyColSimilarPerturbations from similarPerturbations; automatically selected if NULL

keyColSimilarPerturbations

Character: column from similarPerturbations to compare with column keyColTargetingDrugs from targetingDrugs; automatically selected if NULL

Value

ggplot2 plot

Examples

# Rank similarity against CMap compound perturbations
similarPerts <- rankSimilarPerturbations(diffExprStat,
                                         cmapPerturbationsCompounds)
#> Subsetting data based on 8790 intersecting genes (65% of the 13451 input genes)...
#> Comparing against 22 CMap perturbations (2 cell lines) using 'spearman, pearson, gsea' (gene size of 150)...
#> Comparison performed in 0.68 secs

# Predict targeting drugs
gdsc <- loadExpressionDrugSensitivityAssociation("GDSC 7")
#> Loading data from expressionDrugSensitivityCorGDSC7.qs...
#> Error in qread(file): Malformed compress block: compressed size > compress bound
predicted <- predictTargetingDrugs(diffExprStat, gdsc)
#> Error in predictTargetingDrugs(diffExprStat, gdsc): object 'gdsc' not found

plotTargetingDrugsVSsimilarPerturbations(predicted, similarPerts,
                                         "spearman_rank")
#> Error in as.table(targetingDrugs, clean = FALSE): object 'predicted' not found