R/plots.R
plotTargetingDrugsVSsimilarPerturbations.RdPlot similar perturbations against predicted targeting drugs
plotTargetingDrugsVSsimilarPerturbations(
targetingDrugs,
similarPerturbations,
column,
labelBy = "pert_iname",
quantileThreshold = 0.25,
showAllScores = FALSE,
keyColTargetingDrugs = NULL,
keyColSimilarPerturbations = NULL
)targetingDrugs object
similarPerturbations object
Character: column to plot (must be available in both databases)
Character: column in as.table(similarPerturbations) or
as.table(targetingDrugs) to be used for labelling
Numeric: quantile (between 0 and 1) to highlight values of interest
Boolean: show all scores? If FALSE, only the best
score per compound will be plotted
Character: column from targetingDrugs to
compare with column keyColSimilarPerturbations from
similarPerturbations; automatically selected if NULL
Character: column from
similarPerturbations to compare with column
keyColTargetingDrugs from targetingDrugs; automatically
selected if NULL
ggplot2 plot
Other functions related with the ranking of CMap perturbations:
as.table.referenceComparison(),
filterCMapMetadata(),
getCMapConditions(),
getCMapPerturbationTypes(),
loadCMapData(),
loadCMapZscores(),
parseCMapID(),
plot.perturbationChanges(),
plot.referenceComparison(),
prepareCMapPerturbations(),
print.similarPerturbations(),
rankSimilarPerturbations()
Other functions related with the prediction of targeting drugs:
as.table.referenceComparison(),
listExpressionDrugSensitivityAssociation(),
loadExpressionDrugSensitivityAssociation(),
plot.referenceComparison(),
predictTargetingDrugs()
# Rank similarity against CMap compound perturbations
similarPerts <- rankSimilarPerturbations(diffExprStat,
cmapPerturbationsCompounds)
#> Subsetting data based on 8790 intersecting genes (65% of the 13451 input genes)...
#> Comparing against 22 CMap perturbations (2 cell lines) using 'spearman, pearson, gsea' (gene size of 150)...
#> Comparison performed in 1.77 secs
# Predict targeting drugs
gdsc <- loadExpressionDrugSensitivityAssociation("GDSC 7")
#> Loading data from expressionDrugSensitivityCorGDSC7.qs...
predicted <- predictTargetingDrugs(diffExprStat, gdsc)
#> Subsetting data based on 11396 intersecting genes (85% of the 13451 input genes)...
#> Comparing against 266 GDSC 7 compounds (983 cell lines) using 'spearman, pearson, gsea' (gene size of 150)...
#> Comparison performed in 2.58 secs
plotTargetingDrugsVSsimilarPerturbations(predicted, similarPerts,
"spearman_rank")
#> Columns 'name' and 'pubchem_cid' were matched based on 0 common values; to manually select columns to compare, please set arguments starting with 'keyCol'
#> Warning: Ignoring empty aesthetic: `label`.
#> Warning: No shared levels found between `names(values)` of the manual scale and the
#> data's colour values.