Analyse drug set enrichment
analyseDrugSetEnrichment(
sets,
stats,
col = NULL,
nperm = 10000,
maxSize = 500,
...,
keyColSets = NULL,
keyColStats = NULL
)
Named list of characters: named sets containing compound
identifiers (obtain drug sets by running prepareDrugSets()
)
Named numeric vector or either a similarPerturbations
or
a targetingDrugs
object (obtained after running
rankSimilarPerturbations
or
predictTargetingDrugs
, respectively)
Character: name of the column to use for statistics (only required
if class of stats
is either similarPerturbations
or
targetingDrugs
)
Number of permutations to do. Minimial possible nominal p-value is about 1/nperm
Maximal size of a gene set to test. All pathways above the threshold are excluded.
Arguments passed on to fgsea::fgseaSimple
minSize
Minimal size of a gene set to test. All pathways below the threshold are excluded.
scoreType
This parameter defines the GSEA score type. Possible options are ("std", "pos", "neg"). By default ("std") the enrichment score is computed as in the original GSEA. The "pos" and "neg" score types are intended to be used for one-tailed tests (i.e. when one is interested only in positive ("pos") or negateive ("neg") enrichment).
nproc
If not equal to zero sets BPPARAM to use nproc workers (default = 0).
gseaParam
GSEA parameter value, all gene-level statis are raised to the power of `gseaParam` before calculation of GSEA enrichment scores.
BPPARAM
Parallelization parameter used in bplapply. Can be used to specify cluster to run. If not initialized explicitly or by setting `nproc` default value `bpparam()` is used.
Character: column from sets
to compare with column
keyColStats
from stats
; automatically selected if NULL
Character: column from stats
to compare with column
keyColSets
from sets
; automatically selected if NULL
Enrichment analysis based on GSEA
Other functions for drug set enrichment analysis:
loadDrugDescriptors()
,
plotDrugSetEnrichment()
,
prepareDrugSets()
descriptors <- loadDrugDescriptors()
#> compound_descriptors_NCI60_2D.qs not found: downloading data...
drugSets <- prepareDrugSets(descriptors)
# Analyse drug set enrichment in ranked targeting drugs for a differential
# expression profile
data("diffExprStat")
gdsc <- loadExpressionDrugSensitivityAssociation("GDSC")
#> expressionDrugSensitivityCorGDSC7.qs not found: downloading data...
#> Loading data from expressionDrugSensitivityCorGDSC7.qs...
predicted <- predictTargetingDrugs(diffExprStat, gdsc)
#> Subsetting data based on 11396 intersecting genes (85% of the 13451 input genes)...
#> Comparing against 266 GDSC 7 compounds (983 cell lines) using 'spearman, pearson, gsea' (gene size of 150)...
#> Comparison performed in 2.92 secs
analyseDrugSetEnrichment(drugSets, predicted)
#> Matching compounds with those available in drug sets...
#> Ordering results by column 'rankProduct_rank'; to manually select column to order by, please set argument 'col'
#> Columns 'name' and 'name' were matched based on 56 common values; to manually select columns to compare, please set arguments starting with 'keyCol'
#> Performing enrichment analysis...
#> descriptor pval padj ES
#> <char> <num> <num> <num>
#> 1: Non-C/H Atoms: 11 0.0003260515 0.03086621 -0.7500000
#> 2: Small Rings: 4 0.0003088326 0.03086621 -0.6915988
#> 3: sp3-Atoms: 5 0.0001186521 0.03086621 -0.9037610
#> 4: H-Donors: [6, 40] 0.0024378352 0.13846904 0.8880866
#> 5: Polar Surface Area: [123, 141] 0.0022177632 0.13846904 -0.6509521
#> ---
#> 280: Non-C/H Atoms: 7 0.9286700414 0.93525635 -0.2876703
#> 281: Electronegative Atoms: 7 0.9286700414 0.93525635 -0.2876703
#> 282: Small Rings: 3 0.9277195893 0.93525635 -0.2350154
#> 283: Total Molweight: [294, 312] 0.9807118711 0.98071187 -0.5107143
#> 284: Stereo Centers: 3 0.9807118711 0.98071187 -0.5107143
#> NES nMoreExtreme size leadingEdge
#> <num> <num> <int> <list>
#> 1: -1.8826139 2 9 299933, ....
#> 2: -1.9394290 2 15 737754, ....
#> 3: -1.9382045 0 5 174939, ....
#> 4: 1.9393394 4 4 125066, ....
#> 5: -1.7364593 20 12 174939, ....
#> ---
#> 280: -0.6501376 8071 6 706995
#> 281: -0.6501376 8071 6 706995
#> 282: -0.6497893 8945 14 299933, ....
#> 283: -0.6853264 4931 1 613327
#> 284: -0.6853264 4931 1 613327